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Abstract. Radiative transfer is sufficiently well-understood that its pa-3

rameterization in atmospheric models is primarily an effort to balance com-4

putational cost and accuracy. The most common approach is to compute ra-5

diative transfer with the highest practical spectral accuracy but infrequently6

in time and/or space, though errors introduced by this approximation are7

difficult to quantify. An alternative is to perform spectrally sparse calcula-8

tions frequently in time using randomly-chosen spectral quadrature points.9

Here we show that purely random quadrature points, though effective in some10

large-eddy simulations, are not a good choice for models in which the land11

surface responds to radiative fluxes because surface temperature perturba-12

tions can be large enough, and persistent long enough, to affect model evo-13

lution. These errors may be mitigated by choosing teams of spectral points14

designed to limit the maximum surface flux error; teams, rather than indi-15

vidual quadrature points, are then chosen randomly. The approach is imple-16

mented in the ECHAM6 global model and the results are examined using17

“perfect-model” experiments on timescales ranging from a day to a month.18

In this application the approach introduces errors commensurate with the19

infrequent calculation of broadband calculations for the same computational20

cost. But because teams need not increase with size, and indeed may become21

better and more balanced with increased spectral density, improvements in22

radiative transfer may not need to be traded off against spatio-temporal sam-23

pling.24
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1. What does it mean for a parameterization to be accurate?

Unlike many closure problems faced in models of the atmosphere, the environmental25

factors that control the distribution of radiation in the atmosphere are very well under-26

stood, so the solution to fully specified problems is known to great accuracy. Radiation27

parameterizations therefore seek primarily to find an acceptable compromise between ac-28

curacy and computational cost. The accuracy of radiative transfer calculations may be29

measured via comparison to benchmark models [Oreopoulos et al., 2012] which are them-30

selves known to be in excellent agreement with observations [Mlawer et al., 2000; Turner31

et al., 2004]. Comparisons are normally made for clear-sky conditions, consistent with the32

way the parameterizations of absorption by gases are developed.33

State-of-the-art radiation parameterizations can reproduce benchmark calculations to34

within 1% for shortwave fluxes and fractions of a percent for longwave fluxes [Oreopoulos35

et al., 2012] but this accuracy is so computationally expensive that radiation parameteri-36

zations cannot be applied at every timestep of the model. Instead, radiative heating and37

cooling rates are normally updated less frequently than are model dynamics and, in most38

cases, other physical parameterizations. The choice to update radiative heating rates less39

frequently than other fields is an approximation made, not in the radiation parameter-40

ization, but in the coupling to the rest of the model. The simulation errors caused by41

this approximation may range from modest changes in temperature fields [Xu and Ran-42

dall , 1995; Morcrette, 2000] to the introduction of more dramatic instabilities [Pauluis43

and Emanuel , 2004] but are generally difficult to quantify. To minimize simulation errors44
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prudence dictates that the radiation time-step be as close to the dynamical timestep as45

can be afforded, although precisely how close is a subjective choice.46

Several approaches have been developed to accelerate the calculation of radiative fluxes47

to allow for more frequent calculation. One is to use physically-based radiative transfer48

models to train fast statistical models (normally artificial neural networks) to emulate49

fluxes based on the state of the atmosphere [e.g. Chevallier et al., 1998; Krasnopolsky et al.,50

2008]. An intermediate tactic is to apply physical models sparsely in space and/or time,51

use simple statistical models (e.g. regression) to predict changes since the last radiation52

time step, and selectively update calculations based on the expected error [Venema et al.,53

2007]. A third alternative exploits two facts – that cloud properties vary much more54

quickly in the atmosphere than does the concentration of gases, and that variations in55

clouds and gases affect fluxes in different, roughly disjoint spectral regions – to motivate56

updating only the cloud-affected portions of the spectrum at high frequency [Manners57

et al., 2009]. (Räisänen and Barker [2004] and Hill et al. [2011] take a similar approach58

to the related problem of representing cloud variability.) The calculation of cloud-affected59

fluxes can be further accelerated by reducing the spectral detail used to treat absorption60

by gases [Manners et al., 2009].61

Each of these methods, including infrequent radiation calculations, represent approxi-62

mations which introduce errors in radiative heating rates. These errors depend on many63

factors including how quickly the optical properties of the atmosphere are changing. But64

the error characteristics of an approximation can be crucially important in determining65

whether the approximation affects model evolution. Since radiative fluxes at the top of66

the atmosphere are essentially in balance (after accounting for ocean heat storage), for67
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example, even small (< 1 W/m2) biases in radiative fluxes affect multi-decadal simula-68

tions and must be “tuned” away [Mauritsen et al., 2012] and/or balanced by compensating69

errors. Random, uncorrelated noise, on the other hand, does not affect the statistical evo-70

lution of most models, whether that noise comes from parameterizations of gravity wave71

drag [Eckermann, 2012; Lott et al., 2012] or radiation [Pincus et al., 2003] or is externally72

applied in an effort to diversify ensembles of medium-range forecasts [Buizza et al., 1999].73

For the purposes of parameterization development this implies that unbiased algorithms,74

even if they introduce even quite substantial noise in heating rates, can be more accurate,75

in the sense of introducing smaller changes in model evolution, than other approximations76

including detailed algorithms used infrequently.77

Here we describe an approach to radiative transfer parameterization that emphasizes78

the accuracy relevant for hydrodynamic models, including both the radiation calculations79

and the ways those calculations are coupled to the rest of the model. The approach takes80

advantage of the local homogenization of heating rates arising from small scale fluid dy-81

namical processes. We have implemented these ideas in a new radiation package, PSrad82

(named because it is a postscript to the RRTMG package from which it descends), and83

initially implemented in ECHAM climate model. PSrad is unique in that only a small sam-84

ple of the full broadband spectral integration is performed but these calculations are per-85

formed at each time step. This spectral sampling introduces grid-scale noise in radiative86

fluxes, as does the more common use of stochastic samples to represent the subgrid-scale87

distribution of cloud properties [Pincus et al., 2003]. Experiments show that ECHAM88

is insensitive to even large grid-scale perturbations to radiative heating rates within the89

atmosphere, but that significant perturbations in surface fluxes can introduce systematic90
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biases in the model trajectory. Simulation bias can be limited by bounding errors in sur-91

face fluxes using carefully selected subsets of the broadband calculation. The approach92

is applicable to dynamical models at all scales even as significant noise is introduced into93

individual calculations.94

The next section details several strategies for coupling radiation calculations to model95

integrations, including infrequent radiation calculations and spectral subsets computed96

at higher frequency. Section 3 describes the code we have developed to implement these97

strategies and section 4 the impact of two classes of approximations on forecasting and98

quasi-climatological time scales in climate model integrations. Section 5 discusses impli-99

cations for weather forecasting and climate projection applications.100

2. Strategies for spectral integration

Models of the atmosphere require broadband radiation calculations, i.e. those that

account for all wavelengths of radiation emitted by the sun or the earth and its atmosphere.

In parameterizations of radiative transfer this spectral integration is accomplished using

weighted sums

F (x, y, z, t) =
G∑
g

wgFg(x, y, z, t) (1)

where the individual fluxes Fg are computed using optical properties and boundary condi-101

tions appropriate to each pseudo-spectral interval (quadrature point). These quadrature102

points are frequently determined using k-distributions [Fu and Liou, 1992; Lacis and103

Oinas , 1991]; following this nomenclature we refer to these intervals as “g-points”. In the104

shortwave the weights wg account for the distribution of incoming solar energy among105
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the spectral intervals while in the longwave the spectral distribution of flux, and so the106

weights, depends on temperature.107

In most models of the atmosphere radiative fields are updated less frequently then other

variables, i.e.

F (x, y, z, t) ≈ c(x, y, t)
G∑
g

wgFg(x, y, z, trad(t) | trad(t)− t ≤ ∆trad) (2)

where c represents correction factors that may be applied to account for time-varying108

solar zenith angles, surface temperatures, etc. In some implementations [e.g. Morcrette,109

2000] spatial resolution may also be reduced.110

2.1. Monte Carlo Spectral Integration

Infrequent broadband calculations (e.g. Equation 2) can be described as a “spectrally

dense, temporally sparse” approach to computing radiation transfer. Monte Carlo Spectral

Integration [MCSI; see Pincus and Stevens , 2009] reverses these densities:

F (x, y, z, t) ≈ G/G′
G′∑

g∈[1..G]

wgFg(x, y, z, t) (3)

where each of the G′ samples is chosen randomly with replacement at each location and111

time step.112

MCSI was initially introduced for large eddy simulation where it has the advantages of113

being consistent (i.e. converging with increasing temporal and/or spatial resolution, as114

do the other approximations used in LES) and in explicitly sampling temporal variability,115

especially in cloud optical properties. It takes advantage of the fact that local fluid116

instabilities homogenize sampling noise on small scales while, on the larger spatial and117

temporal scales where heating rates can effect the overall evolution of the flow, sampling118

noise is small. In several applications, including purely radiatively-driven flow, LES using119
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MCSI is statistically indistinguishable from LES using benchmark radiation calculations120

(e.g. Eq. 1) [Pincus and Stevens , 2009].121

MCSI implemented similarly in a global model introduces much larger and more sys-122

tematic errors. The green line in Fig. 1 shows the global root-mean-square difference in123

2-m air temperature as a function of forecast lead time between a reference calculation124

that computes broadband radiation at every time step and every grid-point and one using125

the same radiation code (described in Sec. 3) but applying Eq. 3 with G′ = 1. The126

figure shows the average over 29 independent forecasts (see Sec. 4). RMS differences with127

respect to the reference forecast exceed 1.5 K after the first day and grow over time. A128

∼ 0.5 K diurnal cycle tracks the diurnal variation in global mean 2-m temperature and129

occurs because the land surface is not homogeneously distributed over Earth’s surface.130

Why is the MCSI approximation accurate (in the sense of not disturbing the flow) in131

large eddy simulations but not in a global model? There are at least two significant dis-132

tinctions. First, the parameterizations used in global models, especially those for deep133

and shallow convection, depend more non-linearly on the atmospheric state than do the134

simple sub-grid scale models for turbulence and microphysics used in LES, so even unbi-135

ased random sampling noise can bias the flow through non-linearities. More importantly,136

surface properties are frequently fixed in large-eddy simulations, while global models al-137

most always include land surfaces whose temperature changes in response to surface fluxes.138

Perturbations to the surface temperature caused by sampling errors are not homogeneized139

by mixing with neighboring columns, while errors within the atmosphere are mixed by the140

fluid flow. The impact of surface temperature perturbations dominates: on an aquaplanet141
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with globally specified sea surface temperatures (Fig. 1, purple line), differences between142

simulations using Eq. 3 and simulations using Eq. 1 are small.143

2.2. Bounding errors in surface fluxes using teams of spectral points

Figure 1 implies that the magnitude of instantaneous surface flux errors must be144

bounded if a radiation parameterization is to be useful in models including land sur-145

faces. One approach would be to simply increase the numbers of samples, G′, chosen at146

each time step but this is painfully slow: like all Monte Carlo estimates the root-mean-147

square error, for example, decreases as 1/
√
G′ [see, e.g., Sec. 4.2.5 of Evans and Marshak ,148

2005]. An more efficient strategy is to generate sets of g-point “teams” constructed to149

minimize some measure of sampling error, and to sample these teams randomly.150

Assume a set of A representative atmospheres and define a cost function C as some151

measure of the error accumulated over L possible estimates F a
l of the true flux F a in each152

atmosphere. The number of teams, M , may be chosen to be small divisor of the total153

number of g-points G so that each team has the same number m = G/M of quadrature154

points. The members of these teams may then be chosen to minimize C.155

We have computed teams for several values of M using the radiative transfer code de-156

scribed in Sec. 3. Our set of representative atmospheres is obtained from four snapshots157

taken over the course of a single day from a free run of ECHAM6 (A ≈ 73000). We opti-158

mize over L = MA clear-sky fluxes consistent with the way k-distributions are normally159

constructed. Since our goal is to minimize the possibility of very large errors in surface160

fluxes we use the 95% error in surface fluxes E95
srf as our cost function C. Our minimiza-161

tion of C is informal: we compute fluxes for each g-point individually and choose the162

M g-points which make the worst proxies as that first member of each teams. For each163
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remaining team member we process teams randomly and choose the remaining g-point164

that minimizes the cost function for the provisional team. It is likely that the balance of165

teams could be modestly improved though further optimization (by simulated annealing,166

for example).167

Fluxes can then be computed by choosing one of the teams at random:

F (x, y, z, t) ≈M
m∑

g(i∈[1..M ])

wgFg(x, y, z, t) (4)

Because each g-point is included in exactly one team Eq. 4, like Eq. 3, is an unbiased168

estimate of the true flux given by Eq. 1.169

Using teams of g-points is effective in limiting the error for a given computational cost170

(Figure 2). Though the teams are chosen to minimize errors in clear-sky surface fluxes171

the analogous errors for all skies are commensurate, slightly lower in the shortwave where172

the presence of clouds simply reduces downwelling flux and slightly larger in the longwave173

where clouds may change the spectral distribution of flux.174

Teams constructed in this way are more efficient in reducing error as team size increases.175

Figure 3 shows the ratio of errors obtained using teams of a given size (Eq. 4) to those176

using Monte Carlo samples (Eq. 3). The ratio is small in both the shortwave and longwave177

for m = 2 but increases at four or more samples, such that random sampling using Eq.178

3 can achieve commensurate accuracy only by increasing sample sizes by a factor of ten179

or greater - in other words, by increasing computational cost to nearly that of broadband180

integration using Eq. 1.181

3. PSrad/RRTMG: A new radiation code for climate models
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We have developed a new radiation package, PSrad/RRTMG (so named because it is a182

postscript to the RRTMG package), designed for use in models of the atmosphere. The183

longwave and shortwave components are organized along parallel lines: driver modules184

call routines to compute the optical properties of gases, aerosols, and clouds, then combine185

these to compute fluxes at the boundaries and the interfaces between model layers. The186

codes are modeled after the RRTMG package [Mlawer et al., 1997; Iacono et al., 2008]187

and use the k-distribution from this package to determine gas optical thickness from188

concentrations, temperature, and humidity. (These k-distributions are well-validated and189

among the most accurate available; see Oreopoulos et al. [2012].) We follow the original190

RRTMG codes in using the two-stream approximation [after Meador and Weaver , 1980]191

to compute layer reflectance and transmittance and adding [after Oreopoulos and Barker ,192

1999] to compute flux profiles in the shortwave; we use the linear-in-tau approximation193

for the thermal source function [Mlawer et al., 1997] and consider only emission and194

absorption in the longwave. Cloud and aerosol optical properties are determined from195

custom-built lookup tables [Kinne et al., 2012].196

Sub-grid scale variability is treated using “sub-columns” [see, e.g. Räisänen et al., 2004;197

Pincus et al., 2006]: discrete random samples, each treated as internally homogeneous,198

that are consistent with the distributions of possible cloud states within each column, in-199

cluding fractional cloudiness in each layer and assumptions about the vertical correlations200

between layers (“cloud overlap”). This treatment is a generalization of the Monte Carlo201

Independent Pixel Approximation [Pincus et al., 2003] and may be further generalized to202

include other kinds of variability, including the distribution of cloud liquid or ice water203

content as implied by, for example, the Tompkins [2002] cloud scheme.204
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PSrad supports a range of choices for spectral sampling, including broadband integration205

(all G quadrature points in order), arbitrary numbers of randomly chosen quadrature206

points for application of Eq. 3, and a finite number of pre-determined “leagues” of g-point207

teams as described in Sec. 2.208

Though PSrad is currently intended as a drop-in replacement for RRTMG it was im-209

plemented almost entirely from scratch (of the original code, only the subroutine that210

computes longwave gas optical properties remains). The most important technical dif-211

ference lies in the organization: each subroutine is vectorized over model columns, which212

increases computational efficiency on a wide range of platforms. Operational centers213

such as the European Centre for Medium-Range Weather Forecasts have often modified214

RRTMG in this way [Morcrette et al., 2008].215

4. Assessing approximation impacts in a global model

We have implemented PSrad in ECHAM6 [Stevens et al., 2012], a state-of-the-art at-216

mospheric model used for climate simulations. We perform simulations with a version of217

the model differing modestly from the version used to produce data for the Fifth Coupled218

Model Intercomparison Project [Taylor et al., 2012]. The model is run at a horizontal219

resolution of T63 using 47 levels that extend to 1 hPa. These experiments use a 7.5 min220

time step.221

We consider an ensemble of 29 month-long integrations starting from initial conditions222

valid at 0Z on 1 Apr of the years 1976-2004 as simulated by the model in a long integration223

using specified, time-varying sea-surface temperatures. The benchmark is an integration224

in which radiation fields are calculated just as frequently as the tendencies from other225

physical parameterizations (i.e the radiation and physics time steps are the same). We226
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use this reference forecast to assess the error introduced by increasing the interval between227

broadband radiation calculations, on the one hand, and by limiting the number of spectral228

quadrature points used at each time, on the other.229

Root-mean-square differences with the reference forecast grow with time (Figure 4),230

but can be divided into roughly three regimes: slow but accelerating error growth in the231

first ten days, rapid error growth over the next ten days, and roughly saturated errors232

in the last ten days. This may be very loosely described as the transition from weather233

(where individual trajectories are followed) to climate (where the statistics of trajectories234

are of interest), which leads us to examine errors in the first ten days as one might235

evaluate forecasts, but to assess errors in the last ten days statistically, as one might236

assess climatologies.237

The Monte Carlo sampling of fractional cloudiness and overlap introduces noise into238

the fluxes and causes even a second independent reference forecast to diverge from the239

benchmark over time: RMS differences between two sets of reference forecasts rise from240

about 0.05 K during the first day to almost 1.5 K after ten days (Figure 5, top panel,241

purple line), which we take as the rough limit of deterministic forecasts. Increasing the242

sparsity of radiation calculations in either time (purple lines, ∆trad ∈ [15min, 1h, 2h, 3h])243

or spectral quadrature points (green lines, mLW ∈ [4, 10] and mSW ∈ [7, 16] ) increases the244

error by modest amounts in an absolute sense. No evidence has been found that such ap-245

proximation trigger dramatic changes in the simulation [c.f. Pauluis and Emanuel , 2004],246

though even hourly radiation calls increases the RMS difference by 50% of the difference247

introduced by sampling noise (Figure 5, bottom panel). The mean RMS difference over248
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the first ten days (Figure 6) is quite tightly related to computational cost (here expressed249

as the number of shortwave radiation computations per day).250

On timescales where the climatology of the model dominates the character of the solu-251

tion it is more informative to assess the degree to which each approximation produces a252

statistical distribution of temperatures consistent with the reference forecast. We apply253

the two-sided Student’s t-test, for each approximation at every grid point and every time254

step during days 21-31, to compute the likelihood (p-value) that the distribution of 2-m255

temperatures across the 29 ensemble members is statistically indistinguishable at the 95%256

level between the reference forecast and the forecast using the approximation. Because we257

perform so many t-tests (∼ 18,500 per time step) roughly 5% have p-values corresponding258

to “significant” differences ( at the 95% level) even if the underlying distribution of 2-m259

temperatures is the same in both experiments. This may be controlled for using false260

discovery rate estimation [e.g. Wilks , 2006] which exploits the known distribution of p-261

values expected under the null hypothesis to estimate η0, the proportion of uninteresting262

(or truly insignificant) p-values [Strimmer , 2008a], at every time step.263

Independent realizations of the reference run (i.e. two runs making broadband radiation264

calculations at every time step, but using different random number sequences to sample265

cloud states with McICA) are statistically indistinguishable: the time-mean value of η0266

computed from this pair of experiments is 1. This is almost but not quite true when267

comparing the reference run to any of the possible approximations (see Table 1). One268

interpretation of η0 is as the average fraction of the planet over which a given approxi-269

mation does not change the simulation significantly. This fraction is greater than 94%270

for all approximations except MCSI, indicating that changes are detectable but mod-271
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est. The test statistic is not entirely robust: according to this measure radiation time272

steps of T = 1h = 8∆t are slightly more consistent with reference calculations than are273

T = 15min = 2∆t, which is physically implausible. Given this caveat we note that, in this274

relatively coarse-resolution model, infrequent broadband radiation calculations introduce275

slightly smaller changes compared to frequent calls using spectral teams with the same276

computational cost (c.f. lines 2 and 6 of Table 1).277

5. Conclusions: Parameterization error, simulation error, and the coupling of

radiative transfer to atmospheric models

Radiative fluxes respond nearly instantaneously to changes in the optical properties of278

the atmosphere, so the parameterization of radiation is normally considered a “one-way”279

problem in which the model provides the state of the atmosphere and the parameterization280

computes the heating rates and boundary fluxes. In the absence of coupling between281

radiation and model dynamics one naturally seeks instantaneous radiation calculations282

that are as accurate as is computationally feasible. Focusing on the accuracy of the overall283

simulation, including the way radiation calculations are coupled to the model, may allow284

for other kinds of optimization. As one example, the k-distribution developed for RRTMG285

was designed, as are most parameterizations, to minimize broadband flux errors. RRTMG286

aims to balance accuracy with computational cost primarily by minimizing the number287

of g-points. It would be possible, however, to construct k-distributions using different288

cost functions, and distributions constructed to minimize errors both across and among289

teams might be able to achieve greater aggregate accuracy by using more g-points while290

still limiting noise in surface fluxes. This would open the door to resolving the tension291

between overall accuracy, limited by of the number of g-points, and computational cost.292
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Similarly, using spectrally sparse, temporally dense calculations provides a richer set293

choices in how radiation may be coupled to dynamical models to minimize biases. Both294

classes of approximations examined here appear to slightly modify the distribution of295

temperatures, relative to a reference calculation, at quasi-climatological time scales, in296

contrast to the introduction of sampling noise in cloud properties [Pincus et al., 2006;297

Barker et al., 2008]. The modification is small but undesirable, and we are seeking ways298

to reduce the impact of noise. One promising approach is to samples teams in Eq. 4 with299

replacement, rather than entirely independently at each location and time.300

The results of section 4, especially Figure 6, suggest that computational effort is the301

primary determinant of accuracy in coupling these two radiative approximation to short-302

term forecasting models. This comparison is limited, however, since it does not account303

for true model errors or how such errors might depend on sampling strategy. Some304

real-life forecasts errors, such as the damping of surface heating caused by convective305

clouds forming in response to initial surface heating, may well be due to under-sampled306

temporal variability. On the other hand, even modest noise in surface fluxes may lead to307

forecast errors when the coupling between radiation and atmospheric state is strong, as308

in nocturnal stable boundary layers. Thus it remains to be seen whether the statistical309

robustness of Equation 4 will translate into improved weather forecasts.310

Spectrally-sparse, temporally-dense radiation calculations, at least as implemented here,311

disturb simulations with ECHAM6 at least as much as infrequent broadband calculations312

of the same computational cost. Time steps in ECHAM are relatively short so the compar-313

ison may be even worse in models with longer time steps. Other considerations may make314

Eq. 4 desirable, however, especially the convergence of spectral teams with increasing315
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resolution, more uniform distribution of computation time, and the book-keeping sim-316

plifications that arise when some estimate of radiation is computed every time step. In317

ECHAM, for example, shortwave fluxes are computed for all points (using a very small318

minimum solar zenith angle for nighttime points) so that temporal interpolation across the319

sunrise boundary is smooth. Replacing infrequent broadband calculations with frequent320

spectral samples makes this transition smooth (in aggregate), so that shortwave fluxes321

are not required at nighttime points, which alone represents a substantial computational322

savings.323

Though radiation ultimately determines earth’s climate the coupling between radiative324

fluxes and the rest of the atmosphere is loose, such that radiation strongly influences the325

flow only where its effects can accumulate over time, as occurs in descending branches of326

the general circulation or at the tops of stratocumulus clouds. The approach to radiation327

calculations proposed here exploits this loose coupling, trading instantaneous accuracy328

at infrequent intervals for statistical accuracy with more complete sampling of time vari-329

ability. By traditional measures of error [e.g. the comparison of instantaneous fluxes to330

benchmark calculations, as in Oreopoulos et al., 2012], large instantaneous errors make331

spectral sampling a poor idea. We argue that a more appropriate benchmark is the accu-332

mulated affect of approximation errors on the solution as a whole. By this more holistic333

measure of accuracy, frequent but sparse sampling becomes much more attractive because334

the loose coupling of radiation to the flow means that unbiased solutions with large local335

errors are more desirable than solutions with small biases, even if their local errors are336

also small. The present work demonstrates a new path towards accuracy that, in some337

situations, may converge more quickly to the desired solution.338

D R A F T December 11, 2012, 1:14pm D R A F T



X - 18 PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY

Acknowledgments. This work was supported by the Max Planck Society for the Ad-339

vancement of Science, the National Science Foundation Science and Technology Center for340

Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University341

under cooperative agreement No. ATM-0425247, and by the Office of Naval Research un-342

der grant N00014-11-1-0441. Generous computing facilities were provided by the German343

Climate Computing Center (Deutches Klimarechengzentrum, DKRZ). We are grateful to344

the developers of the fdrtool software [Strimmer , 2008b] for making our field significance345

calculations easy. RP appreciates warm hospitality during summer visits to the MPI and346

practical advice from Thorsten Mauritsen on the care and feeding of ECHAM.347

D R A F T December 11, 2012, 1:14pm D R A F T



PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY X - 19

References

Barker, H. W., J. N. S. Cole, J.-J. Morcrette, R. Pincus, P. Raeisaenen, K. von Salzen,348

and P. A. Vaillancourt, The Monte Carlo Independent Column Approximation: An349

assessment using several global atmospheric models, Quart. J. Royal Met. Soc., 134 (635,350

Part B), 1463–1478, doi:10.1002/qj.303, 2008.351

Buizza, R., M. Miller, and T. N. Palmer, Stochastic representation of model uncertainties352

in the ECMWF ensemble prediction system, Quart. J. Royal Met. Soc., 125 (560), 2887–353

2908, doi:10.1002/qj.49712556006, 1999.354

Chevallier, F., F. Chéruy, N. A. Scott, and A. Chédin, A Neural Network Approach for355

a Fast and Accurate Computation of a Longwave Radiative Budget, J. Appl. Meteor.,356

37 (11), 1385–1397, doi:10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2, 1998.357

Eckermann, S. D., Explicitly Stochastic Parameterization of Nonorographic Gravity Wave358

Drag, J. Atmos. Sci., 68 (8), 1749–1765, doi:10.1175/2011JAS3684.1, 2012.359

Evans, K. F., and A. Marshak, Numerical Methods, in 3D Radiative Transfer in Cloudy360

Atmospheres, edited by A. Marshak and A. B. Davis, pp. 243–282, Springer, Berlin361

Heidelbeg New York, 2005.362

Fu, Q., and K. N. Liou, On the correlated k-distribution method for radiative trans-363

fer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139–2156, doi:10.1175/1520-364

0469(1992)049<2139:OTCDMF>2.0.CO;2, 1992.365

Hill, P. G., J. Manners, and J. C. Petch, Reducing noise associated with the Monte Carlo366

Independent Column Approximation for weather forecasting models, Quart. J. Royal367

Met. Soc., 147 (654), 219–228, doi:10.1002/qj.732, 2011.368

D R A F T December 11, 2012, 1:14pm D R A F T



X - 20 PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and369

W. D. Collins, Radiative forcing by long-lived greenhouse gases: Calculations with370

the AER radiative transfer models, J. Geophys. Res., 113 (D13), D13,103, doi:371

10.1029/2008JD009944, 2008.372

Kinne, S., D. ODonnel, P. Stier, S. Kloster, K. Zhang, H. Schmidt, S. Rast, M. Giorgetta,373

T. Eck, and B. Stevens, A new global aerosol climatology for climate studies, J. Adv.374

Model. Earth Syst., 2012.375

Krasnopolsky, V. M., M. S. Fox-Rabinovitz, and A. A. Belochitski, Decadal Cli-376

mate Simulations Using Accurate and Fast Neural Network Emulation of Full,377

Longwave and Shortwave, Radiation, Mon. Wea. Rev., 136 (10), 3683–3695, doi:378

10.1175/2008MWR2385.1, 2008.379

Lacis, A. A., and V. Oinas, A description of the correlated k-distribution method for380

modeling non-grey gaseous absorption, thermal emission, and multiple scattering in381

vertically inhomogeneous atmospheres, J. Geophys. Res., 96, 9027–9063, 1991.382

Lott, F., L. Guez, and P. Maury, A stochastic parameterization of non-orographic gravity383

waves: Formalism and impact on the equatorial stratosphere, Geophys. Res. Lett., 39 (6),384

L06,807, doi:10.1029/2012GL051001, 2012.385

Manners, J., J.-C. Thelen, J. Petch, P. Hill, and J. M. Edwards, Two fast radiative386

transfer methods to improve the temporal sampling of clouds in numerical weather387

prediction and climate models, Quart. J. Royal Met. Soc., 135 (639, Part B), 457–468,388

doi:10.1002/qj.385, 2009.389

Mauritsen, T., B. Stevens, E. Roeckner, T. Crueger, M. Esch, M. Giorgetta, H. Haak,390

J. Jungclaus, D. Klocke, D. Matei, U. Mikolajewicz, D. Notz, R. Pincus, H. Schmidt,391

D R A F T December 11, 2012, 1:14pm D R A F T



PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY X - 21

and L. Tomassini, Tuning the climate of a global model, J. Adv. Model. Earth Syst., 4,392

M00A01, doi:10.1029/2012MS000154, 2012.393

Meador, W. E., and W. R. Weaver, Two-Stream Approximations to Radiative394

Transfer in Planetary Atmospheres: A Unified Description of Existing Meth-395

ods and a New Improvement, J. Atmos. Sci., 37 (3), 630–643, doi:10.1175/1520-396

0469(1980)037<0630:TSATRT>2.0.CO;2, 1980.397

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, RRTM, a398

validated correlated-k model for the longwave, J. Geophys. Res., 103, 16,663–16,682,399

doi:10.1029/97JD00237, 1997.400

Mlawer, E. J., P. D. Brown, S. A. Clough, L. C. Harrison, J. J. Michalsky, P. W. Kiedron,401

and T. Shippert, Comparison of spectral direct and diffuse solar irradiance measure-402

ments and calculations for cloud-free conditions, Geophys. Res. Lett., 27 (17), 2653–403

2656, doi:10.1029/2000GL011498, 2000.404

Morcrette, J.-J., On the Effects of the Temporal and Spatial Sampling of Radiation405

Fields on the ECMWF Forecasts and Analyses, Mon. Wea. Rev., 128 (3), 876–887,406

doi:10.1175/1520-0493(2000)128<0876:OTEOTT>2.0.CO;2, 2000.407

Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, Impact of a408

New Radiation Package, McRad, in the ECMWF Integrated Forecasting System, Mon.409

Wea. Rev., 136 (12), 4773–4798, doi:10.1175/2008MWR2363.1, 2008.410

Oreopoulos, L., and H. W. Barker, Accounting for subgrid-scale cloud variability in a411

multi-layer 1D solar radiative transfer algorithm, Quart. J. Royal Met. Soc., 125 (553,412

Part A), 301–330, doi:10.1002/qj.49712555316, 1999.413

D R A F T December 11, 2012, 1:14pm D R A F T



X - 22 PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY

Oreopoulos, L., E. Mlawer, J. Delamere, T. Shippert, J. N. S. Cole, B. Fomin, M. J.414

Iacono, Z. Jin, J. Li, J. C. Manners, P. Räisänen, F. Rose, Y. Zhang, M. J. Wilson,415

and W. B. Rossow, The Continual Intercomparison of Radiation Codes: Results from416

Phase I, J. Geophys. Res., 117 (D6), D06,118, doi:10.1029/2011JD016821, 2012.417

Pauluis, O., and K. Emanuel, Numerical instability resulting from infrequent cal-418

culation of radiative heating, Mon. Wea. Rev., 132, 673–686, doi:10.1175/1520-419

0493(2004)132<0673:NIRFIC>2.0.CO;2, 2004.420

Pincus, R., and B. Stevens, Monte Carlo Spectral Integration: a consistent approximation421

for radiative transfer in large eddy simulations, J. Adv. Model. Earth Syst., 1, doi:422

10.3894/JAMES.2009.1.1, 2009.423

Pincus, R., H. W. Barker, and J.-J. Morcrette, A fast, flexible, approximate technique424

for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108,425

4376, doi:10.1029/2002JD003322, 2003.426

Pincus, R., R. S. Hemler, and S. A. Klein, Using Stochastically Generated Subcolumns427

to Represent Cloud Structure in a Large-Scale Model, Mon. Wea. Rev., 134 (12), 3644–428

3656, doi:10.1175/MWR3257.1, 2006.429

Räisänen, P., and H. W. Barker, Evaluation and optimization of sampling errors for the430

Monte Carlo Independent Column Approximation, Quart. J. Royal Met. Soc., 130 (601),431

2069–2085, doi:10.1256/qj.03.215, 2004.432

Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, Stochastic433

generation of subgrid-scale cloudy columns for large-scale models, Quart. J. Royal Met.434

Soc., 130 (601), 2047–2067, doi:10.1256/qj.03.99, 2004.435

D R A F T December 11, 2012, 1:14pm D R A F T



PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY X - 23

Stevens, B., M. Giorgetta, E. Monika, T. Mauritsen, T. Crueger, S. Rast, M. Salz-436

mann, H. Schmidt, J. Bader, K. Block, R. Brokopf, I. Fast, S. Kinne, L. Kornblueh,437

U. Lohmann, R. Pincus, T. Reichler, and E. Roeckner, The Atmospheric Component438

of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 2012.439

Strimmer, K., A unified approach to false discovery rate estimation, BMC Bioinformatics,440

9 (1), 303, doi:10.1186/1471-2105-9-303, 2008a.441

Strimmer, K., fdrtool: a versatile R package for estimating local and tail area-based false442

discovery rates, Bioinformatics, 24 (12), 1461–1462, 2008b.443

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, An Overview of CMIP5 and the Experiment444

Design, Bull. Amer. Meteor. Soc., 93 (4), 485–498, doi:10.1175/BAMS-D-11-00094.1,445

2012.446

Tompkins, A. M., A prognostic parameterization for the subgrid-scale variability of water447

vapor and clouds in large-scale models and its use to diagnose cloud cover, J. Atmos.448

Sci., 59 (12), 1917–1942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2,449

2002.450

Turner, D. D., D. C. Tobin, S. A. Clough, P. D. Brown, R. G. Ellingson, E. J. Mlawer, R. O.451

Knuteson, H. E. Revercomb, T. R. Shippert, W. L. Smith, and M. W. Shephard, The452

QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution453

Infrared Radiance, J. Atmos. Sci., 61 (22), 2657–2675, doi:10.1175/JAS3300.1, 2004.454

Venema, V., A. Schomburg, F. Ament, and C. Simmer, Two adaptive radiative transfer455

schemes for numerical weather prediction models, Atmos. Chem. Phys., 7 (21), 5659–456

5674, doi:10.5194/acp-7-5659-2007, 2007.457

D R A F T December 11, 2012, 1:14pm D R A F T



X - 24 PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY

Wilks, D. S., On “Field Significance” and the False Discovery Rate, J. Appl. Meteor.458

Climatol., 45 (9), 1181–1189, doi:10.1175/JAM2404.1, 2006.459

Xu, K. M., and D. A. Randall, Impact of Interactive Radiative Transfer on460

the Macroscopic Behavior of Cumulus Ensembles. Part I: Radiation Parameter-461

ization and Sensitivity Tests, J. Atmos. Sci., 52, 785–799, doi:10.1175/1520-462

0469(1995)052<0785:IOIRTO>2.0.CO;2, 1995.463

D R A F T December 11, 2012, 1:14pm D R A F T



PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY X - 25

Forecast time (d)R
M

SE
 in

 2
−

m
 a

ir
 t

em
p 

(K
)

3 7

1
2

Terrestrial planet

Aquaplanet

Figure 1. The impact of randomly sampling a single spectral interval at every time step

(Monte Carlo Spectral Integration, Eq. 3). Root-mean-square differences are computed with

respect to reference forecasts for an Earth-like planet (green), in which the land temperature

responds to surface fluxes, and an aquaplanet with fixed sea surface temperatures (purple). The

diurnal variation in RMSE for the earth-like planet tracks the diurnal variation in global 2-m air

temperature caused by the asymmetric distribution of land. Sampling noise in radiative heating

rates within the atmosphere drives modest differences, while noise can persist and modify the

simulation when the surface temperature can change in response to surface radiation fluxes, both

because heating rates are substantially larger at the surface than in the atmosphere and because

sampling errors at the surface are not mixed by the flow as they are in the atmosphere. This

implies that accuracy in radiation parameterizations depends in part on limiting perturbations

to downwelling fluxes at the surface.
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Figure 2. Errors in shortwave (blue) and longwave (red) surface fluxes for various spectral

sampling strategies as a function of the number of quadrature points used. Errors are accumulated

over roughly 73000 sample columns representing four snapshots from a single day of ECHAM.

Root-mean square error (right panel) decreases as 1/
√

(n) when samples are chosen randomly

(Eq. 3, squares) though E95 (left) does not, but both decrease much more quickly using “teams”

of g-points chosen to minimize E95 (Eq. 4, circles) than as compared to calculations using the

same number of quadrature points, but chosen at random. Errors for all-sky fluxes (closed circles)

are marginally smaller in the shortwave and larger in the longwave than for the clear-skies used

to optimize the team members primarily because clouds decrease SW surface and increase LW

fluxes.
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Figure 3. Ratio of 95-th percentile error E95 in downwelling surface flux using teams of

spectral intervals, compared to Monte Carlo sampling of spectral intervals, as a function of the

number of samples. Improvements for clear-sky fluxes (open circles) and all-sky fluxes (closed

circles) are commensurate. At small sample sizes error in the longwave fluxes (red) is reduced

more dramatically by using teams than are shortwave fluxes (blue). The error reduction provided

by teams increases with the number of samples but even teams of modest sizes (∼ 8 members)

provide accuracy comparable to ∼ 10 times as many random samples.
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Figure 4. Root-mean-square difference in 2 m air temperature, relative to a reference forecast,

as a function of forecast lead time, for a simulation making broadband radiation calculations

every 2 h while all other physical processes use a 7.5 min time step. The forecasts diverge slowly

during the first ten days (the weather forecasting regime, roughly), so that approximations can

be judged by computing point-by-point root-mean-square differences with the reference. After

roughly three weeks the forecasts are not predictable in a deterministic sense, so parameterization

accuracy is judged by comparing distributions.
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Figure 5. Top: Root-mean-square difference in 2 m air temperature, relative to a reference

forecast, as a function of forecast lead time for two methods of coupling radiation and dynamics in

a global model. Broadband computations applied sparsely in time at intervals ranging from 3 h to

15 min are shown in purple and two examples of “teams” of spectral intervals (as described in the

text, using (7, 16) points in the shortwave and (4, 10) in the longwave) are in green. Differences

between independent realizations of the reference forecast (in pink) show the differences to be

expected from sampling errors in cloud state introduced by the Monte Carlo Independent Pixel

Approximation (McICA). Bottom: Ratio of RMS difference of different coupling approximations

to the RMS difference due to finite sampling of cloud states. All approximations change model

evolution; larger approximations (fewer team members or less frequent sampling in time) degrade

the sampling of the diurnal cycle.
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Figure 6. Time-mean error versus a rough measure of computational cost for two methods of

coupling radiation and dynamics in a global model. Broadband computations applied sparsely in

time are shown in purple and the “teams” of spectral intervals described in the text are in green.

Error is measured as the mean over ten days of the global root-mean-square difference in 2 m air

temperature relative to a reference forecast, and computational cost as the daily number of calls

to the shortwave solver (which dominates the overall cost). The pink line shows the minimum

achievable error (i.e. the error introduced by another realization of cloud states sampled in the

Monte Carlo Independent Pixel Approximation). Approximation errors for the two sampling

strategies are commensurate for a given computational cost.
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Table 1. Time mean fraction of of statistically insignificant η0 differences in 2-m air tempera-

ture between a reference calculation and various approximations for coupling radiation to a global

model. The first three approximations are temporally-dense, spectrally-sparse calculations using

Equation 4 (the first is the special case using Equation 3). The latter four make spectrally-dense

broadband calculations at specified time intervals. All approximations change the simulation of

2-m air temperature by detectable amounts; for a given computational effort, frequent use of

spectral teams introduces slightly larger changes than less frequent broadband calculations.
Approx. SW calls/day η0
mSW = 1,mLW = 1 192 0.804
mSW = 7,mLW = 4 1344 0.943
mSW = 16,mLW = 10 3072 0.977
T = 15 m 10752 0.971
T = 1 h 2688 0.985
T = 2 h 1344 0.955
T = 3 h 896 0.963
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